信息中心

LR ENVIRONMENT

  中山曝气生物滤池中填料的研究及效率对附加微通道湍流促进器SMBR流体动力学性能的影响,曝气生物滤池(Biological aerated filter:BAF)处理污水是近年来开发出的污水处理工艺,已在欧美和日本广为流行,但在我国研究甚少。曝气生物滤池最大的特点是集生物氧化和截留悬浮固体于一体,节省了后续沉淀池(如二沉池)。此外,该处理工艺容积负荷、水力负荷大,占地面积、基建投资少,氧转移率高,出水水质好等特点。

中山曝气生物滤池中填料的研究及效率对附加微通道湍流促进器SMBR流体动力学性能的影响


  关键词: 曝气生物滤池 填料的研究进展 污水处理技术

  曝气生物滤池(Biological aerated filter:BAF)处理污水是近年来开发出的污水处理工艺,已在欧美和日本广为流行,但在我国研究甚少。曝气生物滤池最大的特点是集生物氧化和截留悬浮固体于一体,节省了后续沉淀池(如二沉池)。此外,该处理工艺容积负荷、水力负荷大,占地面积、基建投资少,氧转移率高,出水水质好等特点。

  1 曝气生物滤池污水处理技术的发展

  在城市污水的治理领域,传统的污水处理工艺,如传统活性污泥工艺及其变形工艺、生物氧化沟工艺、生物脱氮除磷工艺(A/O法、A/A/O法及其改进工艺)。A-B工艺和SBR工艺等,处理的水质能达到排放水的一般要求,但不能达到城市 一般回用水标准,而且投资和占地面积大,难于管理。例如活性污泥法,其研究、应用、改进已有很长的历史,目前在世界上仍占优势地位,但同时也存在一些难以克服的缺点。因此,近十几年来,各种废水处理新技术不断涌现。

  在欧洲,为了适应新的标准[1-2],陆续开发了一系列新的污水处理技术,曝气生物滤池从中脱颖而出。它首先被用作三级处理,后来发展成直接用于二级处理[3]。自第1套建在靠近巴黎的sois-sons污水处理厂的装置投产运行以来[4],已在欧、美和日本等发达国家广为流行,目前世界上已有几百座污水处理厂应用了这种技术。曝气生物滤池不仅用于水体富营养化处理,而且广泛地用于生活污水、生活杂排水和食品加工、水果蔬菜罐头、鱼肉制品、酿造和造纸等工业废水处理中。

  2 填料在曝气生物滤池中的核心地位

  曝气生物滤池充分借鉴了污水处理接触氧化法和给水快滤池的设计思路,集曝气、高滤速、截留悬浮物、定期反冲洗等特点于一体。其工作原理主要有过滤、吸附和生物代谢[5]。滤池工作时,在滤池中装填一定量粒径较小的粒状滤料,滤料表面生长着生物膜,滤池内部曝气,污水流经时,利用滤料上高浓度生物膜的强氧化降解能力对污水进行快速净化;同时,因污水流经时,滤料呈压实状态,利用滤料粒径较小的特点及生物膜的生物絮凝作用,截留污水中的大量悬浮物,且保证脱落的生物膜不会随水漂出;此外,填料及附着其上生长的生物膜对溶解性有机物具有一定的吸附作用。运行一定时间后,因水头损失的增加,需对滤池进行反冲洗,以释放截留的悬浮物并更新生物膜,此为反冲洗过程。曝气生物滤池正是通过这样反复的周期性运转来处理污水的。

  填料作为曝气生物滤池的核心组成部分,影响着曝气生物滤池的发展。曝气生物滤池发展过程中依次出现过3种不同的形式[1、6-7]:BIOCARBONE,BIOFOR和BIOSTYR,采用的填料各不相同。BIOCARBONE采用的是石英砂粒;BIOFOR采用的是轻质陶粒;BIOSTYR采用的则是密度比水小的聚苯乙烯球形颗粒。石英砂粒由于密度大,比表面积、孔隙率小;当污水流经滤层时阻力很大,生物量少,因此滤池负荷不高、水头损失大。轻质陶粒和聚苯乙烯作填料时,由于密度小,比表面积、孔隙率大,生物量大,因此滤池负荷较大,水头损失较小。国外的实际运行表明,BIOFOR和BIOSTYR明显优于BIOCARBONE。

  事实上,BAF性能的优劣很大程度上取决于填料的特性,填料的研究和开发在BAF工艺中至关重要,为此,英国、美国和印度等国已制定了曝气生物滤池所用滤料的相应标准,法国德利满公司对应用于曝气生物滤池的滤料也制定了相应的说明书及测试规范,可见各国对曝气生物滤池的滤料都有严格的要求。

  3 填料的研究进展

  曝气生物滤池所用填料,根据其采用原料的不同,可分为无机填料、有机高分子填料;根据填料密度的不同,可分为上浮式填料和沉没式填料。无机填料一般为沉没式填料,有机高分子填料一般为上浮式填料。常见的无机填料有陶粒、焦炭、石英砂、活性炭、膨胀硅铝酸盐等,有机高分子填料有聚苯乙烯、聚氯乙烯、聚丙烯等。

  国外,Rebecca Moore等[8]研究了尺寸范围分别为1.5~3.5mm和2.5~4.5mm的填料对曝气生物滤池处理效果的影响,发现小颗粒(1.5~3.5mm)填料虽然有利于脱氮,但不适应高的水力负荷;而大颗粒(2.5~4.5mm)填料虽然改善了滤池操作条件,减少了反冲洗的次数,但不利于脱氮和SS的去除。这为曝气生物滤池填料在尺寸要求上提供了一定的依据。Allant[9]等人研究结果表明:上浮式填料比沉没式填料对SS、有机物的去除率高,更耐有机负荷和水力负荷冲击。Won-Seok Chang[10]等以天然沸石和砂粒为填料研究BAF对纺织废水的处理效果发现:天然沸石对纺织废水的处理效果优于砂粒的处理效果,这是因为天然沸石具有更强的阳离子交换能力和更大的比表面积。这说明轻质填料取代高密度填料是曝气生物滤池污水处理技术发展过程中的必然趋势。 我国对曝气生物滤池填料的研究以陶粒为最多,这是因为陶粒作为填料的一种,不仅材料低廉易得,而且显示出的优良特性,特别适合我国的国情。早期的陶粒大多采用页岩直接烧制、破碎、筛分而成,为不规则状(片状居多)。最近出现的球形轻质陶粒,采用粘土(主要成分为偏铝硅酸盐)为原材料,加入适当化工原料作为膨胀剂,经高温烧制而成。朱乐辉等人[11]以粘土为主要原料,结合其它化工原料在温度为1180℃时烧制的轻质陶粒用作曝气生物滤池污水处理的研究表明:①球形轻质陶粒强度大、孔隙率大。比表面积大、化学稳定性好,与玻璃钢、聚氯乙烯、聚丙烯、维纶等滤料相比,具有生物附着性强、挂膜性能良好、水流流态好、反冲洗容易进行。截污能力强等优点;②形状规则,粒径可大可小,密度适宜,克服了不规则粒状滤料水流阻力大,易引起氧化池堵塞,反冲洗强度大,易冲刷破碎的缺点;③加工过程完全不同于传统的片状陶粒滤料。表面结釉一直是传统片状陶粒滤料没有解决的难题;而球形轻质陶粒主要以粘土为原料,控制适当的配料和烧制工艺,可改变陶粒的密度,且使其表面粗糙、多微孔、不结釉。④以球形轻质陶粒作接触填料,采用淹没式曝气生物滤池处理污水,可以起到深度处理的作用,处理后的水能重新利用并节约用地。周彩楼等[12]以净水厂淤泥为原料研制超轻陶粒取得了满意的结果,开创了污泥资源化的又一途径。齐兵强、王占生等人[6]以球形轻质陶粒(主要性能见表1)作为曝气生物滤池填料处理生活污水时发现:尽管在很高的滤速(6.5~8m/h)下,其处理水质仍然很高,而且曝气量小,氧利用率高;此外,该曝气生物滤池系统水头损失增加缓慢,反冲洗周期长,节约了能源和操作费用。

  从曝气生物滤池填料的发展来看,在以后的研究中,主要的方向将在以下几个方面:①研究填料对污染物去除的影响及污染物去除机制。目前,对BAF运行的工艺条件研究很多,但是对于污染物的转移和代谢途径没有深人的研究;填料上生物相分布、生态结构缺乏系统的分析和解释;另外,填料如何影响污染物去除机制不明。②开发以天然材料为主要成分的无机填料,如轻质陶粒的研究开发。合成的高分子填料与微生物之间相容性较差,所以在挂膜时生物量少,易脱落,而以天然材料为原料的无机填料可以克服以上不足,但是需要重点解决的问题是如何增加强度、增大空隙率和减小密度。③寻求改善填料性能的工艺和方法。填料加工过程中的工艺非常重要,为了获得优质填料,生产工艺和方法需要不断改进。④制定适于曝气生物滤池的填料标准。欧美国家对曝气生物滤池用填料均有较为严格的标准,但在我国目前还没有,在系统掌握填料的尺寸、性状、密度等因素对污染物去除的影响后,制定适于我国曝气生物滤池的填料标准意义深远。这不仅使得填料的生产规范化,而且极大促进BAF污水处理技术在我国的应用和推广。

  浸没式膜生物反应器(submergedmembranebioreactor,SMBR)是在内环气升式生物反应器基础上改进的一种高效的生物处理与膜处理相结合的反应器,具有出水水质好、占地少、污泥产量低、易于实现自动控制、操作管理方便等优点,但其因膜污染严重、水通量下降快等缺点,严重影响了浸没式膜生物反应器在工程中的推广与普及[15]。当前研究者有通过湍流促进器改善流体的流动形态[69],也有利用曝气[10,11]在膜表面形成气液两相流,增加膜面剪切力,达到降低膜污染及浓差极化的目的。

  近年来,有许多学者采用计算流体动力学(computerfluentdynamic,CFD)和粒子成像测速(particleimagevelocimetry,PIV)技术来模拟和测试SMBR中单相流、两相流和多相流的流态分布,同时给出速度和剪切力等性能指标的分布信息。Judd等[12]利用CFD模拟SMBR管式膜中的流场,并结合实验,证明了CFD模拟的膜面剪切力和膜通量具有良好的相关性。李金等[13]利用计算流体动力学CFD方法对浸没式超滤膜过滤器内的流场进行数值模拟,通过计算得到过滤器内流体速度场,压力场和紊流强度的分布情况。Yang等[14]利用CFD模拟了浸没式平板膜生物反应器的两相和三相流,并把计算结果与实验数据进行了比较。最终结果表明,错流速度是减轻膜污染的重要因素。Amini等[15]在市政废水处理的CFD模拟及实验中,使用两相流和三相流分别考察了膜生物反应器中的气泡直径、污泥浓度、曝气率、生物相和膜生物反应器的流体动力学和性能,从模拟结果及实验数据得出,在不同污泥浓度下错流速度是减少膜污染的必要因素。Gimmelshtein等[16]主要研究在有档板的情况下,通过PIV测试平板膜通道间速度及混合指数的变化。结果表明,档板会造成流体流动方向的改变。Liu等[17]探讨了膜生物反应器内气水两相流的流动特性。利用PIV和高速相机检测膜生物反应器系统中的气泡大小和运动以及单相流和两相流的速度分布情况。Willems等[18]利用PIV和CFD研究了液体和液体/气体流过有档板的通道内流体速度分布。结果表明,两相流状态下比单相流的速度变化更不稳定,更有利于防止膜污染的浓差极化。Yan等[19]通过CFD和PIV研究了在低曝气强度下档板的不同位置和尺寸对气升式平板膜生物反应器流体动力学性能的影响。

  本研究把曝气与微通道湍流促进器结合在一起防治浸没式平板膜生物反应器的膜污染和浓差极化。先采用CFD中的欧拉模型对附加微通道湍流促进器的浸没式平板膜生物反应器内气液两相流进行数值模拟,并考察浸没式平板膜生反应器内流体动力学性能指标:速度、剪切力、湍流动能、湍流强度、湍流耗散率及静压的变化。接着通过PIV实验对浸没式平板膜生物反应器膜面流场进行测试。最后结合CFD模拟结果与PIV实验结果,找出最佳曝气率以便改善浸没式平板膜生物反应器流体动力学性能,减少能耗,增加膜面剪切力,有效控制膜污染和浓差极化。

  1 CFD数值模拟

  1.1 数学模型

  由于本实验是对反应器内流体特性的研究,因此在建立数学模型时将忽略气体与液体流动过程中的传热,只模拟反应器内的流场特性,假定流体是非稳态的、定常的、不可压的。所以建立的基本守恒方程为连续方程和动量守恒方程。

  1.1.1 连续方程(continuityequation)

  式中:ρ是密度,t是时间,u是速度矢量,α为气含率。

  1.1.2 动量守恒方程(momentum conseravationequation)

  式中:p是静压,f是体积力,ν是运动粘度。

  1.2 几何模型及边界条件的设定

  附加微通道湍流促进器的浸没式平板膜生物反应器可简化为二维算例。本文采用AutoCAD2008建模,模型如图1(a)所示。浸没式平板膜生物反应器为600mm×300mm的长方形,中间是膜组件,膜面上每隔64mm交错放置微通道湍流促进器。为模拟方便将曝气口简化为小的圆形。膜片及曝气孔位置与实际安装位置相同,即距离反应器内底分别为180mm和135mm。液体入口(waterinlet)设为速度进口边界条件,速度为0.5m/s。气体入口(airinlet)设为速度进口边界条件。反应器出口边界条件设为outflow。

  1.3 计算模型

  根据浸没式平板膜生物反应器流体的特性,在模拟中选用Euler模型,考察曝气速率对附加微通道湍流促进器的浸没式膜生物反应器性能的影响。采用非结构网格,利用Meshing对膜生物反应器进行网格划分。网络采用的是三角形和四边形单元,并在局部单元特别是对曝气孔以及微通道湍流促进器处进行加密处理,如图1(b)所示。为了保证计算的稳定,满足迁移性要求且尽量避免数值上的扩展误差,在计算时离散方式选用二阶迎风格式。计算方法选用了压力耦合的SIMPLIC算法。为保证计算数值的收敛性,残差采用10-5。